嘘~ 正在从服务器偷取页面 . . .

Welcome
06
25
Fraktur 哥特体 Fraktur 哥特体
Fraktur 哥特体 鉴于最近看到 \(\mathfrak{R}(z)\) 和 \(\mathfrak{I}(z)\) 然后发现自己根本看不懂,于是来补习一下 哥特体或哥德体(英语:Blackletter,德语:Gebrochene S
2024-06-25
25
24
24
24
《组合数学》 §2.2 学习笔记 《组合数学》 §2.2 学习笔记
《组合数学》 §2.2 学习笔记 例 2.2.1 (Hanoi 塔问题) 这个东西都快讲烂了,\(h_n = 2^n-1\) 。 一般地,称数列 \(\{h_n\}_{n=0}^{\infty}\) 满足 \(k\) 阶常系数线性非齐次递推
2024-06-24
24
23
《组合数学》 §1.4 学习笔记 《组合数学》 §1.4 学习笔记
《组合数学》 §1.4 学习笔记 前言:本章节标题叫组合恒等式,那我就一个证明都不写了。 定理 1.4.1 (二项式定理) 参考 广义二项式定理 (什么垃圾作者怎么这么推荐的?原来是我啊那没事了) 性质 1.4.2 设 \(n \ge k
2024-06-23
23
《组合数学》 §1.3 学习笔记 《组合数学》 §1.3 学习笔记
《组合数学》 §1.3 学习笔记 1.3.1 ~ 1.3.7 和 1.3.11 ~ 1.3.16 这部分请参考 小蓝书 16.1 。书上例题也都比较经典/简单,所以不写了 例 1.3.8 把集合 \(\{1,2,\cdots,n\}\) 划
2024-06-23
23
《组合数学》 §1.2 学习笔记 《组合数学》 §1.2 学习笔记
《组合数学》 §1.2 学习笔记 前言:本文有很多 \(\leqslant\) 符号,均表示偏序关系。小于等于则使用 \(\le\) 。(自己定的规则,其实可以混用) 定义 1.2.1 设 \(X\) 是一个非空集合, \(P\) 是定义在
2024-06-23
23
《组合数学》 §1.1 学习笔记 《组合数学》 §1.1 学习笔记
《组合数学》 §1.1 学习笔记 前言:开新坑,但是这个坑比其他的好填。 定义 1.1.1 组成集合的对象称作元素。 定义 1.1.2 多重集是元素可以重复出现的集合。某个元素 \(a_i\) 出现的次数 \(n_i~(n_i = 0,1,
2024-06-23
23
23
25 / 125