嘘~ 正在从服务器偷取页面 . . .

洛谷P2388 阶乘之乘 题解


洛谷P2388 阶乘之乘 题解

题目链接:P2388 阶乘之乘

题意

求出 $1!\times 2!\times 3!\times 4!\times \cdots \times n!$ 的末尾有几个零。

输入格式

一行,一个整数 $n(n\le 10^8)$。

输出格式

输出答案,表示零的个数。

很经典的一道题,先说一下 $\mathcal{O}(n)$ 的小学生解法:

注意到 $n!$ 中 $5$ 的个数显然小于 $2^i$ 的个数,于是我们只需要统计每个阶乘里有多少个 $5$​ 即可

scanf("%lld",&n);
for(int i=1; i<=n; i++)
{
    int tmp=i;
    while(tmp%5==0)sum++,tmp/=5;
    ans+=sum;
}
printf("%lld\n",ans); // 本代码写于 2021-03-08


下面说一下更快的解法。考虑把刚才的结论写成式子。

令 $f(n)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{5^i}\right\rfloor$ ,则

时间复杂度 $\mathcal{O}(\log n)$

主要代码:

int n, res = 0; cin >> n;
for(int j = 5; j <= n; j *= 5)
{
    res += j * (n / j) * (n / j - 1) / 2;
    res += (n / j) * (n % j + 1);
}
cout << res << '\n';

参考文献

[1] https://www.luogu.com.cn/article/mqej6cz0


文章作者: q779
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-ND 4.0 许可协议。转载请注明来源 q779 !
评论
  目录