嘘~ 正在从服务器偷取页面 . . .

洛谷P5081 Tweetuzki 爱取球 题解


洛谷P5081 Tweetuzki 爱取球 题解

题目链接:P5081 Tweetuzki 爱取球

题意

Tweetuzki 有一个袋子,袋子中有 $N$ 个无差别的球。Tweetuzki 每次随机取出一个球后放回。求取遍所有球的期望次数。

取遍是指,袋子中所有球都被取出来过至少一次。

输入格式

一行一个整数 $N$ $(1 \le N \le 10^7)$。

输出格式

一行一个整数,表示期望次数。由于这个数可能很大,输出对 $20040313$ (是个质数)取模。

数据范围

对于 $100\%$ 的数据,$1 \le N \le 10^7$。

引理:设成功完成事情 $A$ 的概率为 $P$ ,如果不成功就继续。则期望 $\dfrac{1}{P}$ 次完成这件事。

证明:设期望 $k$ 次完成事情 $A$ 。根据定义有

其中 $1$ 表示初始的一次尝试,$p$ 表示本次成功,$(1-p)$ 表示本次失败。移项得 $k = \dfrac{1}{p}$ 。$\square$

现在我们来看原题。考虑从 $n$ 个球中取出一个球,期望次数为 $\left(\frac{n}{n}\right)^{-1} = 1$ 。

接着考虑取出剩下的 $n-1$ 个球中的一个球,期望次数为 $\left(\frac{n-1}{n}\right)^{-1} = \frac{n}{n-1}$ 。依此类推可知答案为:

时间复杂度 $\mathcal{O}(n)$

代码:

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
void up(int &x,int y) { x < y ? x = y : 0; }
void down(int &x,int y) { x > y ? x = y : 0; }
#define N ((int)(1e7 + 15))

int n,sum,inv[N]; const int p = 20040313;
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n; inv[1] = 1; sum = 1;
    for(int i = 2; i <= n; i++) {
        inv[i] = (p - p / i) * inv[p % i] % p; sum = (sum + inv[i]) % p;
    } cout << (n * sum % p) << '\n';
    return 0;
}

参考文献

[1] https://www.luogu.com.cn/blog/SCP-Foundation/solution-p5081


文章作者: q779
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-ND 4.0 许可协议。转载请注明来源 q779 !
评论
  目录