嘘~ 正在从服务器偷取页面 . . .

几何分布


几何分布

在概率论和统计学中,几何分布(英语:Geometric distribution)指的是以下两种离散型概率分布中的一种:

  • 在伯努利试验中,得到一次成功所需要的试验次数 $X$ 。 $X$ 的值域是 $\{ 1, 2, 3, \cdots \}$
  • 在得到第一次成功之前所经历的失败次数 $Y = X − 1$ 。$Y$ 的值域是 $\{ 0, 1, 2, 3, \cdots \}$

实际使用中指的是哪一个取决于惯例和使用方便。

这两种分布不应该混淆。

前一种形式( $X$ 的分布)经常被称作 shifted geometric distribution

但是,为了避免歧义,最好明确地说明取值范围。因此本文优先采用前者。


数学定义

如果每次试验的成功概率是 $p$ ,那么 $k$ 次试验中,第 $k$ 次才得到成功的概率是

而另一种形式,也就是第一次成功之前所失败的次数,可以写为

若随机变量 $X$ 服从参数为 $p$ 的几何分布,则记 $X \sim G(p)$ 。


不难发现两种情况产生的序列都是几何数列(等比数列),这便是几何分布的名字来源。

比如,假设不停地掷骰子,直到得到 $1$ 。

投掷次数是随机分布的,取值范围是无穷集合 $\{ 1, 2, 3, \cdots \}$,并且是一个 $p = \frac{1}{6}$ 的几何分布。


性质

几何分布满足以下性质

  • 概率质量函数为

  • 期望值为

  • 方差为

几何分布具有非记忆性的性质(Memoryless Property,又称遗失记忆性)

这表示如果一个随机变量呈几何分布,它的条件概率遵循:


参考文献

[1] 几何分布 - 维基百科,自由的百科全书


文章作者: q779
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-ND 4.0 许可协议。转载请注明来源 q779 !
评论
  目录