嘘~ 正在从服务器偷取页面 . . .

洛谷P2375 [NOI2014] 动物园 题解


洛谷P2375 [NOI2014] 动物园 题解

题目链接:P2375 [NOI2014] 动物园

题意

近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

某天,园长给动物们讲解KMP算法。

园长:“对于一个字符串$S$,它的长度为$L$。我们可以在$O(L)$的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”

熊猫:“对于字符串$S$的前$i$个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作$next[i]$。”

园长:“非常好!那你能举个例子吗?”

熊猫:“例$S$为abcababc,则$next[5]=2$。因为$S$的前$5$个字符为abcabab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出$next[1] = next[2] = next[3] = 0$,$next[4] = next[6] = 1$,$next[7] = 2$,$next[8] = 3$。”

园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在$O(L)$的时间内求出next数组。

下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串$S$的前$i$个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作$num[i]$。例如$S$为aaaaa,则$num[4] = 2$。这是因为$S$的前$4$个字符为aaaa,其中aaa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,$num[1] = 0,num[2] = num[3] = 1,num[5] = 2$。”

最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出$num$数组呢?

特别地,为了避免大量的输出,你不需要输出$num[i]$分别是多少,你只需要输出所有$(num[i]+1)$的乘积,对$1,000,000,007$取模的结果即可。

$N ≤ 5, L ≤ 1,000,000$

注:border为公共前后缀

考虑 $S$ 的最长border $s$

显然 $s$ 的最长border一定也是 $S$ 的border

则 $\text{num}_{S} = \text{num}_s+1$(先不考虑重叠问题)

对于重叠的情况直接跳fail数组即可

时间复杂度 $O(\sum|s_i|)$

代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(1e6+15)
const int p=1e9+7;
char s[N];
int n,fail[N],res,num[N];
void solve()
{
    for(int i=2,j=0; i<=n; i++)
    {
        while(j&&s[i]!=s[j+1])j=fail[j];
        if(s[i]==s[j+1])++j;
        fail[i]=j; num[i]=num[j]+1;
    }
    for(int i=2,j=0; i<=n; i++)
    {
        while(j&&s[i]!=s[j+1])j=fail[j];
        if(s[i]==s[j+1])++j;
        while((j<<1)>i)j=fail[j];
        res=res*(num[j]+1)%p;
    }
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    int Q; cin >> Q;
    while(Q--)
    {
        res=1;num[1]=1;
        cin >> (s+1); n=strlen(s+1);
        solve(); cout << res << '\n';
    }
    return 0;
}

文章作者: q779
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-ND 4.0 许可协议。转载请注明来源 q779 !
评论
  目录