洛谷P2216 [HAOI2007]理想的正方形 题解
题意: 有一个 $a \times b$ 的整数组成的矩阵,现请你从中找出一个 $n \times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
去年集训写过这题,也是去年集训唯一过了的(那个数据水
upd.20220722 今年集训又来了。
当时的解法稍微改了一下也可以过,放在本文最后
正解:单调队列
考虑先对每一行跑一次单调队列
构造一个 $m \times (n-k+1)$ 的矩阵(设 $n$ 行 $m$ 列)
再交换一下行列,跑出一个 $(m-k+1)\times (n-k+1)$ 的矩阵
然后就直接枚举就好了,其实没啥难的
时间复杂度 $O(n^2)$
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
namespace FastIO
{
#define gc() readchar()
#define pc(a) putchar(a)
#define SIZ (int)(1e6+15)
char buf1[SIZ],*p1,*p2;
char readchar()
{
if(p1==p2)p1=buf1,p2=buf1+fread(buf1,1,SIZ,stdin);
return p1==p2?EOF:*p1++;
}
template<typename T>void read(T &k)
{
char ch=gc();T x=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-1;ch=gc();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
k=x*f;
}
template<typename T>void write(T k)
{
if(k<0){k=-k;pc('-');}
static T stk[66];T top=0;
do{stk[top++]=k%10,k/=10;}while(k);
while(top){pc(stk[--top]+'0');}
}
}using namespace FastIO;
#define N (int)(1e3+15)
int st,en,q[N];
int n,m,k,in[N][N],a[N][N],b[N][N],mn[N][N],mx[N][N];
void solve1(int *num,int rowid,int n,int len,int f)
{
st=en=0;
for(int i=1; i<=n; i++)
{
if(f==1)while(st<en&&num[i]<num[q[en]])--en;
if(f==2)while(st<en&&num[i]>num[q[en]])--en;
q[++en]=i;
while(st<en&&q[st+1]+len<=i)++st;
if(i>=len&&f==1)a[i-len+1][rowid]=num[q[st+1]];
if(i>=len&&f==2)b[i-len+1][rowid]=num[q[st+1]];
}
}
void solve2(int *num,int rowid,int n,int len,int f)
{
st=en=0;
for(int i=1; i<=n; i++)
{
if(f==1)while(st<en&&num[i]<num[q[en]])--en;
if(f==2)while(st<en&&num[i]>num[q[en]])--en;
q[++en]=i;
while(st<en&&q[st+1]+len<=i)++st;
if(i>=len&&f==1)mn[i-len+1][rowid]=num[q[st+1]];
if(i>=len&&f==2)mx[i-len+1][rowid]=num[q[st+1]];
}
}
signed main()
{
read(n);read(m);read(k);
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
read(in[i][j]);
for(int i=1; i<=n; i++)
solve1(in[i],i,m,k,1),solve1(in[i],i,m,k,2);
for(int i=1; i<=m-k+1; i++)
solve2(a[i],i,n,k,1),solve2(b[i],i,n,k,2);
int ans=INF;
for(int i=1; i<=n-k+1; i++)
for(int j=1; j<=m-k+1; j++)
ans=min(ans,mx[i][j]-mn[i][j]);
printf("%lld\n",ans);
return 0;
}
这里是奇怪的解法
构建一个二维的st表,和上面思路差不多
时间复杂度 $O(n^2\log n)$ ,也可以过
代码:
#include <bits/stdc++.h>
using namespace std;
//#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
typedef long long ll;
namespace FastIO
{
#define gc() readchar()
#define pc(a) putchar(a)
#define SIZ (int)(1e6+15)
char buf1[SIZ],*p1,*p2;
char readchar()
{
if(p1==p2)p1=buf1,p2=buf1+fread(buf1,1,SIZ,stdin);
return p1==p2?EOF:*p1++;
}
template<typename T>void read(T &k)
{
char ch=gc();T x=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-1;ch=gc();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
k=x*f;
}
template<typename T>void write(T k)
{
if(k<0){k=-k;pc('-');}
static T stk[66];T top=0;
do{stk[top++]=k%10,k/=10;}while(k);
while(top){pc(stk[--top]+'0');}
}
}using namespace FastIO;
#define MAXN (int)(1e3+5)
int n,m,k,N,M;
int MX[MAXN][MAXN];
int MN[MAXN][MAXN];
int stmx[MAXN][MAXN][11];
int stmn[MAXN][MAXN][11];
ll ans=INF;
void change1(int x,int u,int v)
{
stmx[x][u][0]=v;
stmn[x][u][0]=v;
for(int i=1; u-(1<<(i-1))>=1; i++)
{
stmx[x][u][i]=max(stmx[x][u][i-1],stmx[x][u-(1<<(i-1))][i-1]);
stmn[x][u][i]=min(stmn[x][u][i-1],stmn[x][u-(1<<(i-1))][i-1]);
}
}
void change2(int x,int u)
{
stmx[x][u][0]=MX[x][u];
stmn[x][u][0]=MN[x][u];
for(int i=1; u-(1<<(i-1))>=1; i++)
{
stmx[x][u][i]=max(stmx[x][u][i-1],stmx[x][u-(1<<(i-1))][i-1]);
stmn[x][u][i]=min(stmn[x][u][i-1],stmn[x][u-(1<<(i-1))][i-1]);
}
}
int qrymx(int x,int l,int r)
{
int k=(double)log(r-l+1)/log(2);
return max(stmx[x][l+(1<<k)-1][k],stmx[x][r][k]);
}
int qrymn(int x,int l,int r)
{
int k=(double)log(r-l+1)/log(2);
return min(stmn[x][l+(1<<k)-1][k],stmn[x][r][k]);
}
int qrymx(int x,int l)
{
int r=l+k-1;
int p=(double)log(r-l+1)/log(2);
return max(stmx[x][l+(1<<p)-1][p],stmx[x][r][p]);
}
int qrymn(int x,int l)
{
int r=l+k-1;
int p=(double)log(r-l+1)/log(2);
return min(stmn[x][l+(1<<p)-1][p],stmn[x][r][p]);
}
signed main()
{
read(n);read(m);read(k);
for(int i=1; i<=n; i++)
for(int j=1,x; j<=m; j++)
{
read(x);
change1(i,j,x);
}
for(int j=1; j<=m-k+1; j++)
for(int i=1; i<=n; i++)
MX[j][i]=qrymx(i,j,j+k-1),
MN[j][i]=qrymn(i,j,j+k-1);
for(int i=1; i<=m-k+1; i++)
for(int j=1; j<=n; j++)
change2(i,j);
for(int i=1; i<=m-k+1; i++)
for(int j=1; j<=n-k+1; j++)
ans=min(ans,(ll)qrymx(i,j)-qrymn(i,j));
printf("%lld\n",ans);
return 0;
}