嘘~ 正在从服务器偷取页面 . . .

AT3913 XOR Tree 题解


AT3913 XOR Tree 题解

题目链接:AT3913 XOR Tree

题意:给你一棵有 $N$ 个节点的树,节点编号从 $0$ 到 $N-1$ , 树边编号从 $1$ 到 $N-1$ 。第 $i$ 条边连接节点 $x_i$ 和 $y_i$ ,其权值为 $a_i$。

你可以对树执行任意次操作,每次操作选取一条链和一个非负整数 $x$,将链上的边的权值与 $x$ 异或成为该边的新权值。

问最少需要多少次操作,使得所有边的权值都为 $0$ 。

$2\le N \le10^5,0\le x_i,y_i \le N-1,0\le a_i \le 15$

首先可以想到:

边权不好处理,将其转化为点权

不过如果直接转化为点权似乎还是不好弄 q779想到这就没了

我们知道异或有自反性 $(p\oplus q \oplus p = q )$ 等性质

则考虑将点权定义为 $\text{val}(u) = \bigoplus\limits_{v_i \in V \land (u,v_i) \in E}w(u,v_i)$

也就是和每个结点直接相邻的边的边权的异或和

此时我们就将边权映射到了点权上(注意本题可以看作一棵无向无根树)

路径 $u-v$ 的修改转化为了 $u,v$ 两个点的修改

因为点权是异或和

所以同时修改路径上某个非端点结点所连的两条边,异或和不变(自反性)

首先,我们来证明几个结论


命题1 :当且仅当 $\sum_{u_i\in V} \text{val}(u_i)=0$ 时,$\sum_{l_i\in E} w(l_i) = 0$。

证明

  • 必要性证明:显然当边权和为 $0$ 时,点权和也为 $0$ 。

  • 充分性证明:设树上的结点数为 $n$ ,若叶子结点 $u$ 的点权为 $0$

    则与其相连的边的边权也为 $0$ ,因此这条边不会影响到 $u$ 的父结点,归纳可得


命题2:一个数字集合通过不断取两个数字并异或上同一个数有解,当且仅当这个数字集合异或和为 $0$ 。

证明:显然,因为每次修改不会改变该集合的异或和。


命题3:$\bigoplus\limits_{u_i\in V} \text{val}(u_i) = 0$ 。

证明:显然,每条边都有两个端点,根据自反性可得。


这样,我们就可以贪心地选择两个点权相同的结点消掉了

可是如果没有没有点权相同的结点了怎么办呢?

可以发现,此时最多有 $16$ 个互不相同的数字,而 $0$ 不用考虑,因此最多只有 $15$ 个数字

考虑状压dp

令 $dp_s$ 为将数字集合 $s$ 全部变为 $0$ 的最小操作数

显然至多要 $|s|-1$ 次操作(也就是原图中一条条边消)

直接去搞是有后效性的,所以考虑如何转移

我们可以枚举 $s$ 的一个子集 $k$ ,则有 $dp_s = \min(dp_s,dp_k+dp_{s/k})$

复杂度怎么样呢?

代码如下

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(2e5+15)
int n,val[N],d[N],cnt[25],res,st,sxr[N];
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    cin >> n;
    for(int i=1,u,v,w; i<n; i++)
        cin >> u >> v >> w,val[u]^=w,val[v]^=w;
    for(int i=0; i<n; i++) ++cnt[val[i]];
    for(int i=1; i<=15; i++) res+=cnt[i]/2,st|=(cnt[i]&1)<<(i-1);
    for(int i=1; i<(1<<15); i++) d[i]=d[i>>1]+(i&1);
    for(int i=1; i<(1<<15); i++)--d[i];
    for(int i=1; i<(1<<15); i++)
        for(int j=0; j<15; j++)if((i>>j)&1)sxr[i]^=(j+1);
    for(int i=1; i<(1<<15); i++)
    {
        if(sxr[i]!=0)continue;
        for(int k=(i-1)&i; k; k=(k-1)&i)
            if(sxr[k]==0)d[i]=min(d[i],d[k]+d[i^k]);
    }
    cout << res+d[st] << endl;
    return 0;
}

讲个笑话,写完自己读一遍差点没读懂

参考文献

[1] https://www.luogu.com.cn/blog/ShadowassIIXVIIIIV/solution-at3913

[2] https://www.luogu.com.cn/blog/xzc/solution-at3913


文章作者: q779
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-ND 4.0 许可协议。转载请注明来源 q779 !
评论
  目录