note[0]
某个学MO的朋友给我看的题
这题似乎是1994年国家数学集训队选拔考试D1T1
怪不得我做了好久(
upd.20220513 害,他半途而废退役了
题面:
求四个所有的由四个自然数 $a,b,c,d$ 组成的数组,使数组中任意三个数的乘积除以剩下的一个数余数为 $1$
题解:
(注:我写的可能有点不太正式,毕竟我只是个OIer)
由题意可得
$abc \equiv 1 \mod d$
$abd \equiv 1 \mod c$
$acd \equiv 1 \mod b$
$bcd \equiv 1 \mod a$
可化为
$d\mid (abc-1)$
$c\mid (abd-1)$
$b\mid (acd-1)$
$a\mid (bcd-1)$
$\therefore ab\mid (acd-1)(bcd-1) \Rightarrow ab\mid (abc^2d^2-acd-bcd+1)$
$\therefore ab\mid (acd+bcd-1)$
同理 $cd\mid (abc+abd-1)$
$\therefore abcd\mid (a^2bc^2d+ab^2c^2d+a^2bc^2d+ab^2cd^2-abc-abd-acd-bcd+1)$
$\therefore abcd\mid (abc+abd+acd+bcd-1)$
设 $t=\dfrac{abc+abd+acd+bcd-1}{abcd}$
$\therefore t=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}-\dfrac{1}{abcd}$
显然 $a,b,c,d$ 两两互质,且 $a \ge 2$
由于不考虑顺序,则假设 $2\le a < b < c < d$
$\therefore t< \dfrac{4}{a} \le 2$
$\because t\in \mathbb{Z}^+$
$\therefore a=2,3,t=1$
当 $a=3$ 时,$t_{max} = \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{360} = \dfrac{341}{360}<1$$\quad\therefore$舍去
当 $a=2$ 时,$t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{210} = \dfrac{246}{210}>1$
$\therefore a =2$
$\therefore \dfrac{1}{2}<\dfrac{3}{b}$
$\therefore b=3,5$
当 $b=5$ 时,$t_{max} = \dfrac{1}{2}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{630} = \dfrac{600}{630}<1$$\quad\therefore$舍去
当 $b=3$ 时,$t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{210} = \dfrac{246}{210}>1$
$\therefore b=3$
$\therefore \dfrac{1}{6} < \dfrac{2}{c}$
$\therefore c=7,11$
当 $c=7$ 时,$t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{11}-\dfrac{1}{462} = \dfrac{492}{462}>1$
当 $c=11$ 时,$t_{max} = \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{11}+\dfrac{1}{13}-\dfrac{1}{858} = \dfrac{858}{858}=1$
显然当 $c=11$ 时 $d=13$
则一组解为 $2,3,11,13$
当 $c=7$ 时
$\dfrac{1}{42}<\dfrac{1}{d}$
$\therefore d=41$
则另一组解为 $2,3,7,41$
综上所述,答案为 $2,3,11,13$ 或 $2,3,7,41$
为了验算结果我直接敲了个 $O(n^4)$ 的暴力(傻)